Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production.

نویسندگان

  • Hsien-Long Chin
  • Zu-Shia Chen
  • C Perry Chou
چکیده

We demonstrated the feasibility of fedbatch operation using Clostridium acetobutylicum suspension culture as a biocatalyst for the continuous production of hydrogen. The optimum operating pH and temperature of the current cultivation system for hydrogen production were pH 6.0 and 37 degrees C, respectively. The volumetric loading of the bioreactor for hydrogen production can be as high as 650 mmol hydrogen/L culture with a yield at approximately 2.0 mol hydrogen/mol glucose. Acetate and butyrate made up approximately 80% of the total metabolites. The inhibitory effect from the two metabolites on the hydrogen production process was investigated. Butyrate at a concentration higher than 13 g/L significantly inhibited not only cell growth but also hydrogen production (i.e., specific hydrogen production rate). Acetate appears to be less toxic than butyrate to the hydrogen production process. While significantly inhibiting cell growth, acetate hardly affected hydrogen production. Finally, the factors limiting cultivation performance were discussed and possible strategies for enhancing the production of hydrogen were proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Author's personal copy Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique

Biohydrogen production is measured using a variety of techniques, ranging from low cost intermittent gas release methods where yields are usually reduced due to high partial pressures of hydrogen, to expensive respirometers that can eliminate pressure buildup. A new large headspace volume technique was developed that reduces the potential for hydrogen gas inhibition without the need for a respi...

متن کامل

Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention ...

متن کامل

Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol.

Clostridium butyricum is to our knowledge the best natural 1,3-propanediol producer from glycerol and the only microorganism identified so far to use a coenzyme B12-independent glycerol dehydratase. However, to develop an economical process of 1,3-propanediol production, it would be necessary to improve the strain by a metabolic engineering approach. Unfortunately, no genetic tools are currentl...

متن کامل

Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol.

The metabolism of Clostridium acetobutylicum was manipulated, at neutral pH and in chemostat culture, by changing the overall degree of reduction of the substrate, using mixtures of glucose and glycerol. Cultures grown on glucose alone produced only acids, and the intracellular enzymatic pattern indicated the absence of butyraldehyde dehydrogenase activity and very low levels of coenzyme A-tran...

متن کامل

Altered Electron Flow in Continuous Cultures of Clostridium acetobutylicum Induced by Viologen Dyes.

The physiological response of Clostridium acetobutylicum to methyl and benzyl viologen was investigated. Viologen dyes at low concentrations (at levels of parts per million [micrograms per milliliter]) caused significant metabolic shifts. Altered electron flow appeared to direct carbon flow from acid to alcohol production accompanied by decreased hydrogen evolution. Reducing equivalents normall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2003